07.06.08
Обновлен раздел "Стройматериалы". Старые объявления
Вы можете увидеть в разделе "Архив объявлений". Добавлена
возможность поиска по разделам "Стройматериалы" и "Архив
объявлений"
23.04.08
Уважаемые посетители! На сайте в тестовом режиме запущен поиск
по содержимому статей. Просим Вас отсылать замечания о работе поиска
на наш e-mail. Обновлено содержимое раздела "Статьи" - смотрите
анонсы на главной странице.
17.04.08
Обновлен раздел "Новости строительства". На сайт добавлены
новые статьи.
04.04.08
Обновлен раздел "Выставки" . Новые статьи добавлены
в разделы.
27.03.08
Обновлен раздел "Работа" . На сайт добавлены новые статьи.
24.03.08
Обновлен раздел "Новости строительства" . На сайт добавлен
новый раздел "События" в котором будут размещаться анонсы
наиболее важных событий в строительной отрасли. Также, на сайт добавлен
целый ряд новых статей.
13.03.08
В ряд разделов добавлены новые статьи. Их анонсы вынесены на первую
страницу.
12.03.08
Обновлен раздел - "Новости строительства".
11.03.08
В ряд разделов добавлены новые статьи. Их анонсы вынесены на первую
страницу.
06.03.08
Обновлены разделы: "Выставки" и "Работа".
21.02.08
Обновлен раздел - "Новости строительства".
15.02.08
Добавлен новый раздел - "Новости строительства". Помимо
новостей стройиндустрии, мы будем размещать в нем пресс-релизы строительных
организаций. Предлагаем Вам присылать свои новости по адресу указанному
в разделе "Рекламодателям"
13.02.08
Обновлен раздел "Объявления строительных фирм"
Прорыв в новые области знаний, технологий, создание изделий с требуемыми свойствами, резкое улучшение экономических показателей, обретение технико-экономической независимости вследствие отказа от использования традиционно приемлемых материалов – все это возможно только благодаря новым полимерным композиционным материалам (ПКМ). Перспективны для ответственных конструкций ПКМ на основе термореактивных смол, армированных различными волокнами: базальтовыми (БВ), стеклянными (СВ). Широко применяемые смесевые традиционные технологические процессы ПКМ характеризуются многостадийностью: на одном предприятии синтезируют олигомеры (смолы), затем на другом проводят ими пропитку волокнистых материалов, сушку, подготовку пресс-пакета для прессования, который снова нагревают и затем прессуют изделие. Такие технологии крайне трудоемки, энергетически затратны, с пониженными характеристиками получаемого материала и экологически напряженными условиями труда.
В Саратовском государственном техническом университете разработан метод поликонденсационного наполнения (ПКН) путем пропитки волокнистого наполнителя композицией из мономеров с последующим синтезом полимера в структуре и на поверхности волокна, что повышает прочностные и физико-химические характеристики ПКМ сокращает число стадий процесса, снижает энерго- и трудозатраты, а также экологическую напряженность производства.
Этот метод представляет, по сути, внедрение «гостя» – органического полимера в структуру «хозяина» – неорганического волокна. Локализацию, концентрацию и пространственное расположение «гостей» определяют топология, химическая природа и реакционная способность внутренней и внешней поверхности «хозяина». Последнюю можно активировать различными химическими и физическими методами, которые позволяют поры «хозяина» адаптировать к размерам молекул мономеров. Включение молекул мономеров в поры волокон с их последующим контролируемым превращением как в порах, так и на их поверхности обеспечивает получение ПКМ с повышенными характеристиками. В данной работе представлены результаты исследования ряда эффектов, сопутствующих процессам формирования таких ПКМ на основе СВ и БВ и фенолформальдегидной матрицы.
БВ, полученные из базальта, представляют перспективный армирующий материал, на основе которого могут быть созданы высокопрочные, теплостойкие и хемостойкие ПКМ. Производство базальтовых волокон увеличивается, так как сырьем служат горные породы, а формование осуществляется подобно СВ фильерным способом в широком ассортименте: штапельное волокно, нити, ровинги, холсты, ткани и маты. Химический состав в зависимости от месторождения изменяется незначительно и характеризуется содержанием компонентов, представленных в таблице 1.
В исследованиях использовались базальтовые и стеклянные нити со следующими характеристиками (табл.2).
Синтез фенолформальдегидных олигомеров (ФФО) проводили по следующей методике: реакционной смесью (из фенола, формальдегида и NaOH в качестве катализатора) пропитывали подготовленные волокна, уложенные в специальные ячейки для синтеза; реакцию проводили при Т=900С, продолжительность синтеза варьировали в пределах 5–120 мин. За ходом процесса следили по изменению массы реакционной смеси и по способности синтезированных олигомеров к формированию сетчатых структур при следующих условиях: Т = 1550С, Р = 25 МПа,
t = 15 минут. Выход золь-гель фракций определяли по стандартной методике в аппарате Сокслета.
При проведении реакции по описанной методике молекулы мономера, соизмеримые с порами волокон, внедряются в последние и сорбируются самой поверхностью волокна. При дальнейшем синтезе при 900С и отверждении при 1550С образуются микропленки полимерной матрицы с ориентированной структурой по рельефу поверхности пор и волокон. В итоге при поликонденсации создаются так называемые полиструктуры, что значительно повышает комплекс свойств получаемых ПКМ. Это экспериментально показано для ПКМ, армированных углеродным волокном.
Наблюдаемое замедление процесса синтеза ФФО в присутствии СВ (рис.1, кривая 2), связано со взаимодействием синтезируемых олигомеров с гидроксильными группами на поверхности стекловолокна и исключением их из сферы реакции.
Отмеченное замедление реакции поликонденсации на ранних стадиях (10–40 минут) процесса для системы с базальтовым волокном (рис. 1, кривая 1) может объясняться также взаимодействием, которое характерно для СВ. Обнаруженное повышение интенсивности процесса на последующих стадиях (40–70 минут), очевидно, связано с упорядочением молекул олигомеров в структуре и на поверхности БВ и более активным их участием в реакции.
Способность ФФО к формированию сетчатых структур оценивали по выходу гель-фракций через определенные промежутки времени от начала реакции синтеза. Как видно из рисунка 2, ФФО, синтезируемые в присутствии БВ (кривая 1), начинают проявлять способность к формированию сетчатых структур на ранних стадиях реакции (39 масс. % через 15 минут от начала реакции). В то время как для контрольной (ненаполненной) системы (рис.2, кривая 3) этот показатель составляет менее 5 масс.%. Способность к формированию сетчатых структур для наполненной и ненаполненной систем на завершающей стадии процесса синтеза выравнивается; выход гель-фракции через 90 минут от начала реакции синтеза составляет 94–96 масс. %. ФФО, синтезируемые в присутствии СВ, медленнее проявляют способность к формированию сшитых структур. Так, выход гель-фракции через 40 минут составляет лишь 38 масс.% и только через 120 минут от начала реакции – 95 масс. % (рис. 2, кривая 2).
Полученные данные позволили выбрать основные параметры синтеза ФФО в структуре СВ и БВ с учетом их влияния на процесс поликонденсационного наполнения, обеспечивающие получение олигомеров, способных к формированию сетчатых структур в процессе отверждения препрегов. Для обеспечения требуемой степени удаления низкомолекулярных соединений до остаточного содержания 6% проводилась сушка препрегов (таблица 3).
Оптимальная продолжительность синтеза и сушки композиции с СВ оказывается выше, по сравнению с синтезом композиции с БВ. Это доказывает замедляющее действие СВ на процесс реакции.
Экспериментальные данные о влиянии условий синтеза на физико-механические свойства ПКМ представлены в таблице 4 и на рисунке 3.
По результатам работы можно заключить, что в условиях поликонденсационного наполнения при пропитке волокна реакционной системой из мономеров улучшается взаимодействие мономеров и синтезированных олигомеров с волокнами, в отличии от традиционной технологии получения ПКМ, что проявляется в получении более высоких свойств композитов на основе исследуемых волокон.
Проведенными исследованиями доказана возможность получения базальтопластов по технологии поликонденсационного наполнения с повышенной прочностью при изгибе по сравнению со стеклопластиками (635 и 400 МПа соответственно). Данная технология позволяет объединить в единое производство синтез олигомеров из мономеров непосредственно в волокнистой системе с последующим формованием изделий с заданной структурой и свойствами, тем самым резко сократив число стадий процесса и улучшив технико-экономические и экологические показатели производства.