Влияние кремнеземной пыли на формирование свойств высокопрочных бетонов


М.В.Предтеченский, канд. техн. наук, доцент

Первоначальный интерес к применению КП в бетонах был обусловлен проблемами охраны окружающей среды и усиленным контролем загрязнения атмосферы, а также необходимостью экономии энергии в промышленности строительных материалов за счет частичной замены цемента промышленными отходами. Первый опыт применения КП в бетоне отмечен в 1971 г. на металлургическом заводе Фиско в Норвегии.
Новые возможности использования КП тесно связаны с прогрессом в области создания эффективных суперпластификаторов – их сочетание дало толчок к созданию бетонов нового поколения, обладающих высокой прочностью (от 60 до 150 МПа), повышенной удобоукладываемостью и долговечностью.
При выплавке 1 т ферросилициевых сплавов выделяется около 300 кг КП. По мере повышения содержания кремния в сплаве увеличивается количество двуокиси кремния SiO2 в пыли. В сплавах с содержанием кремния 50 и 75% содержание кремнезема в пыли составляет соответственно 61–77% и 84–88%, а в случае технически чистого кремния – 87–89%.
Кремнеземная пыль, как указано выше, представляет собой очень мелкие шарообразные частички аморфного кремнезема со средней удельной поверхностью около 20 м2/г.
Тонкость КП можно проиллюстрировать сравнением с другими порошкообразными материалами:
· кремнеземная пыль 140000–300000 см2/г;
· золы уноса 4000–7000 см2/г;
· портландцемент 3000–4000 см2/г.
Гранулометрический состав КП свидетельствует о том, что размер большинства частиц не превышает 1 микрона, а средний размер частиц составляет около 0,1 микрона, т.е. примерно в 100 раз меньше среднего размера зерна цемента (рис. 1).
Кремнеземную пыль можно получать в трех состояниях – природном и уплотненном, а также в виде водной суспензии (около 50%). Например, в Польше на металлургическом заводе "Лазиска" близ Катовиц пылеулавливающие установки задерживают ежегодно около 20 млн тонн КП, химический состав которой отличается неизменным постоянством – высоким уровнем содержания кремнезема и незначительным количеством окислов железа, кальция, магния и серы.
Плотность КП в естественном состоянии составляет примерно 2,2 г/см3 (портландцемента – 3,1 г/см3), а объемная плотность в рыхлом состоянии – 130–430 кг/м3 (цемента – 1500 кг/м3). За счет уплотнения можно повысить плотность до 480–720 кг/м3.
Согласно данным польских ученых, КП не несет радиоактивной опасности. Она содержит следы радия-226 и тория-232, а концентрация калия К-40 соответствует содержанию этого изотопа в природных заполнителях.
Весьма мелкий гранулометрический состав и значительная удельная поверхность зерен аморфного кремнезема обусловливают высокие пуццолановые свойства и позитивное влияние КП на свойства бетона. Кремнезем в таком виде легко вступает в реакцию с гидроокисью кальция, высвобождаемой в процессе гидратации цемента, повышая тем самым количество гидратированных силикатов типа CSH в результате реакции:

SiO2+хСa(OH)2+yH2OxCaO•SiO2•(x+y)H2O

Эта вновь образовавшаяся фаза СSH характеризуется меньшим отношением С/S (даже до 1,4), чем CSH в результате гидратации цемента. Как следствие, она обладает способностью присоединять другие ионы, особенно щелочи, что имеет существенное значение в связи с применением КП для уменьшения расширения, вызванного реакциями между щелочами и заполнителем.
На рис. 2 показаны графики изменения содержания Сa(ОН)2 в течение трех месяцев гидратации растворов из портландцемента 35 с добавками КП в размере от 10 до 30% (В/Ц и В/Ц + КП = 0,4). В случае добавки КП в количестве 10–20% заметный процесс восстановления гидроокиси кальция начинается через 3 дня, а при добавке 30% – уже через один день и протекает весьма интенсивно вплоть до 28-го дня твердения. Это означает, что в этот период пуццолановая реакция является наиболее интенсивной.
Тем не менее, следует подчеркнуть, что с учетом необходимости защиты арматуры содержание КП в бетонах не должно превышать 10%.
Известно, что прочность переходной зоны между цементным раствором и крупным заполнителем меньше прочности самого раствора. Эта зона содержит больше пустых пространств, образующихся вследствие скопления свободной воды около зерен заполнителя, а также сложностей, связанных с более плотной упаковкой частиц у его поверхности. В этом пространстве скапливается больше частиц портландита. В случае отсутствия добавки КП образуются крупные кристаллы Са(ОН)2, ориентированные параллельно поверхности заполнителя или арматуры. Кристаллы портландита обладают меньшей прочностью, чем гидратированные силикаты кальция CSH. Именно поэтому переходная зона и является самым слабым звеном в обычном бетоне.
Добавка КП даже в количестве 2–5% приводит к уплотнению структуры переходной зоны за счет заполнения свободных пространств. Поэтому уменьшается как величина кристаллов портландита, так и степень их ориентации относительно зерен заполнителя, что обусловливает упрочнение этой слабой зоны бетона. В результате происходит восстановление самопроизвольно отдаваемой воды, снижается пористость переходной зоны и повышается сцепление теста с заполнителем и арматурой. Пуццолановые реакции, как фактор химического воздействия, вызывают дальнейшее повышение прочности и долговечности бетона. Считается, что в течение первых 7 дней твердения воздействие КП на свойства бетона имеет в основном физический характер, а позднее – как физический, так и химический.
В результате физического и химического воздействия происходит благоприятное изменение микроструктуры теста, связанное со значительным уменьшением пористости в зоне капиллярных пор. Изменение структуры пор в бетоне рассматривается многими исследователями как главный фактор влияния КП на механические свойства и прочность бетона. Эти изменения находят свое отражение в снижении проницаемости бетона, а также в уменьшении коэффициентов диффузии ионов хлора. В свою очередь, снижение водопроницаемости способствует повышению стойкости бетона к воздействиям агрессивных сред.
В случае добавки 15% кремнеземной пыли, на каждое зерно цемента в бетонной смеси приходится свыше 2 млн частичек пыли, что и объясняет их существенное влияние на свойства бетона.
Наконец, КП способствует устранению расширения бетона при реакциях щелочей с реакционноспособным заполнителем.
Стоимость КП в различных странах колеблется в широких пределах. Если раньше ее рассматривали как неизбежные и ненужные отходы, то сегодня ее стоимость, как правило, превышает стоимость цемента: в Швеции – в 1,5–2 раза, в Великобритании – в 2–3 раза, в США –в 5 раз.
С учетом изложенного применение КП рекомендуется в бетонах:
- подвергающихся эрозионному истиранию (для ремонта плотины Кинзуа в Пенсильвании использовано около 1500 м3 бетона с добавкой 18% КП, прочность которого на сжатие в 28-дневном возрасте составила примерно 90 МПа, причем после семи лет последующей эксплуатации не отмечено никаких повреждений отремонтированных элементов);
- коррозионностойких (бетонные смеси содержат около 385 кг/м3 цемента и 7,5–10% КП при В/Ц = 0,40);
- обладающих высокой прочностью в раннем возрасте (строительство мостов, туннелей, автодорог, взлетно-посадочных полос и т.п.);
- высокопрочных – до 140 МПа (355–565 кг/м3 цемента, 5–15% КП, В/Ц = 0,24);
- с реакционноспособными заполнителями (до 20% КП);
- стойких к истиранию (полы промзданий, автомобильные стоянки, тротуары и дорожные покрытия);
- обладающих повышенной долговечностью и водонепроницаемостью (для применения в агрессивных средах, связанных с воздействием хлоридов, сульфатов и солей-антиобледенителей);
- для строительства морских и береговых сооружений (только для строительства моста через пролив Большой Бельт в Дании использовано 2 млн м3 бетона с добавками КП и зол уноса).

Литература
1. Wolska-Kotanska C. Ksztaltowanie wlasciwosci betonu pylami krzemionkowymi. Inzynieria ibudownictwo No.9, 1993

    

Список стройматериалов в алфавитном порядке
Страница 1: AL - антистатик
Страница 2: аренда - водопровод
Страница 3: водослив - желоб
Страница 4: жилье - короткобазовый
Страница 5: коррубит - наирит
Страница 6: наклейка - пергамин
Страница 7: перевозка - радиатор
Страница 8: разгрузка - средство
Страница 9: СРО - услуги
Страница 10: установка - ящик